Deterministic and Probabilistic Conditions for Finite Completability of Low Rank Tensor

نویسندگان

  • Morteza Ashraphijuo
  • Vaneet Aggarwal
  • Xiaodong Wang
چکیده

We investigate the fundamental conditions on the sampling pattern, i.e., locations of the sampled entries, for finite completability of a low-rank tensor given some components of its Tucker rank. In order to find the deterministic necessary and sufficient conditions, we propose an algebraic geometric analysis on the Tucker manifold, which allows us to incorporate multiple rank components in the proposed analysis in contrast with the conventional geometric approaches on the Grassmannian manifold. This analysis characterizes the algebraic independence of a set of polynomials defined based on the sampling pattern, which is closely related to finite completion. Probabilistic conditions are then studied and a lower bound on the sampling probability is given, which guarantees that the proposed deterministic conditions on the sampling patterns for finite completability hold with high probability. Furthermore, using the proposed geometric approach for finite completability, we propose a sufficient condition on the sampling pattern that ensures there exists exactly one completion for the sampled tensor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Deterministic and Probabilistic Sampling Patterns for Finite Completability of Low Tensor-Train Rank Tensor

In this paper, we analyze the fundamental conditions for low-rank tensor completion given the separation or tensor-train (TT) rank, i.e., ranks of unfoldings. We exploit the algebraic structure of the TT decomposition to obtain the deterministic necessary and sufficient conditions on the locations of the samples to ensure finite completability. Specifically, we propose an algebraic geometric an...

متن کامل

Fundamental Conditions for Low-CP-Rank Tensor Completion

We consider the problem of low canonical polyadic (CP) rank tensor completion. A completion is a tensor whose entries agree with the observed entries and its rank matches the given CP rank. We analyze the manifold structure corresponding to the tensors with the given rank and define a set of polynomials based on the sampling pattern and CP decomposition. Then, we show that finite completability...

متن کامل

Deterministic and Probabilistic Conditions for Finite Completability of Low-rank Multi-View Data

We consider the multi-view data completion problem, i.e., to complete a matrix U = [U1|U2] where the ranks of U,U1, and U2 are given. In particular, we investigate the fundamental conditions on the sampling pattern, i.e., locations of the sampled entries for finite completability of such a multi-view data given the corresponding rank constraints. In contrast with the existing analysis on Grassm...

متن کامل

A Characterization of Deterministic Sampling Patterns for Low-Rank Matrix Completion

Low-rank matrix completion (LRMC) problems arise in a wide variety of applications. Previous theory mainly provides conditions for completion under missing-at-random samplings. This paper studies deterministic conditions for completion. An incomplete d ×N matrix is finitely rank-r completable if there are at most finitely many rank-r matrices that agree with all its observed entries. Finite com...

متن کامل

Rank Determination for Low-Rank Data Completion

Recently, fundamental conditions on the sampling patterns have been obtained for finite completability of low-rank matrices or tensors given the corresponding ranks. In this paper, we consider the scenario where the rank is not given and we aim to approximate the unknown rank based on the location of sampled entries and some given completion. We consider a number of data models, including singl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1612.01597  شماره 

صفحات  -

تاریخ انتشار 2016